
1105

First Principles Planning in BDI Systems∗

Lavindra de Silva
RMIT University

Melbourne, Australia
ldesilva@cs.rmit.edu.au

Sebastian Sardina
RMIT University

Melbourne, Australia
ssardina@cs.rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
linpa@cs.rmit.edu.au

ABSTRACT

BDI (Belief, Desire, Intention) agent systems are very powerful,
but they lack the ability to incorporate planning. There has been
some previous work to incorporate planning within such systems.
However, this has either focussed on producing low-level plan se-
quences, losing much of the domain knowledge inherent in BDI
systems, or has been limited to HTN (Hierarchical Task Network)
planning, which cannot find plans other than those specified by the
programmer. In this work, we incorporate classical planning into
a BDI agent, but in a way that respects and makes use of the pro-
cedural domain knowledge available, by producing abstract plans
that can be executed using such knowledge. In doing so, we rec-
ognize an intrinsic tension between striving for abstract plans and,
at the same time, ensuring that unnecessary actions, unrelated to
the specific goal to be achieved, are avoided. We explore this ten-
sion, by first characterizing the set of “ideal” abstract plans that
are non-redundant while maximally abstract, and then developing
a more limited but feasible account in which an abstract plan is
“specialized” into a new abstract plan that is non-redundant and
preserves abstraction as much as possible. We describe an algo-
rithm to compute such a plan specialization, as well as algorithms
for the production of a valid high level plan, by deriving abstract
planning operators from the BDI program.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents, Languages and structures

General Terms

Theory, Algorithms

1. INTRODUCTION
BDI (Belief, Desire, Intention) systems are a widely used plat-

form for developing agent systems, and have been claimed to pro-
vide a more than 300% efficiency gain in developing complex sys-
tems [1]. It is also recognised that they provide robustness and flex-

∗We would like to thank the anonymous reviewers for their help-
ful suggestions. We would also like to acknowledge the support
of Agent Oriented Software and the Australian Research Council
(under grant LP0882234), and of the National Science and Engi-
neering Research Council of Canada (under a PDF fellowship).

Cite as: First Principles Planning in BDI Systems, Lavindra de Silva,
Sebastian Sardina and Lin Padgham, Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. Navigate(rock1, rock2)
2. PerformSoilExperiment(rock2)
3. Navigate(rock2, rock3)
4. PerformSoilExperiment(rock3)

(a) Hybrid-solution h

1. Navigate(rock1, rock2)
2. ObtainSoilResults(rock2)
3. EstablishConnection
4. SendResults(rock2)
5. Navigate(rock2, rock3)
6. ObtainSoilResults(rock3)
7. SendResults(rock3)
8. BreakConnection

(b) Hybrid-solution h′

1. Navigate(rock1, rock2)
(A) CalibrateViaGPS
(B) Move(rock1, rock2)

2. PerformSoilExperiment(rock2)
(A) ObtainSoilResults(rock2)

(i) PickSoilSample(rock2)
(ii) AnalyseSoilSample(rock2)

(a) GetMoistureContent(rock2)
(b) GetSoilParticleSize(rock2)
(c) GetSoilDensity(rock2)

(iii) DropSoilSample
(B) TransmitSoilResults(rock2)

(i) EstablishConnection
(ii) SendResults(rock2)
(iii) BreakConnection

3. Navigate(rock2, rock3)
(A) CalibrateViaGPS
(B) Move(rock2, rock3)

4. PerformSoilExperiment(rock3)
(A) ObtainSoilResults(rock3)

(i) PickSoilSample(rock3)
(ii) AnalyseSoilSample(rock3)

(a) GetMoistureContent(rock3)
(b) GetSoilParticleSize(rock3)
(c) GetSoilDensity(rock3)

(iii) DropSoilSample
(B) TransmitSoilResults(rock3)

(i) EstablishConnection
(ii) SendResults(rock3)
(iii) BreakConnection

(c) Execution trace of hybrid-solution h

Figure 1: A redundant hybrid-solution h, a non-redundant

hybrid-solution h′, and the execution trace of h.

ibility. Nonetheless, they generally lack any planning functionality.
In [12], a principled approach to incorporating HTN (Hierarchical
Task Network) planning into BDI systems was provided, by using
the knowledge contained in the BDI plan library. Still, such an
approach only provides look-ahead planning to assist in choosing
among existing plans. It is unable to create any new plan structures.

In this work, we consider the problem of using classical first-
principles planning to find plans not currently available as part of
the plan library. Unlike some earlier work on adding classical plan-
ning to BDI systems (e.g., [10, 3]), we focus on producing abstract,
so-called hybrid plans, using the knowledge encoded in the BDI
system as much as possible. Hybrid-plans may include abstract
operators, which can be mapped back to BDI goals, thus allow-
ing the agent to execute the plan using its BDI plan library. This
has two substantial advantages as compared to plans made up of
primitive actions only. Firstly, it respects what Kambhampati et
al. refer to as the user-intent principle [8]: “good” plans are ones
whose primitive actions can be parsed in terms of goals whose pri-
mary effects support the goal state, as such plans respect relevant
encoded domain knowledge. Our approach of directly using BDI
goals as abstract operators intuitively also ensures that the resulting
sequence of primitive actions is parseable in terms of higher level
goals. Secondly, providing an abstract plan allows for flexibility
and robustness during execution, since standard BDI plan selection
and failure recovery can be used to adapt to environmental changes.

Cite as: First Principles Planning in BDI Systems, Lavindra de Silva,
Sebastian Sardina, Lin Padgham, Proc. of 8th Int. Conf. on Autono-
mous Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary,
pp. 1105–1112
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1106

One problem that must be addressed in developing abstract plans
is that of avoiding overly abstract operators, which, while achieving
the desired goal, also yield additional unwarranted actions. Con-
sider the example of a Mars Rover agent exploring the surface of
Mars. At some point, the agent invokes a planner, which returns
the hybrid-solution h shown in Figure 1(a). Its execution involves
carrying on primitive and non-primitive (i.e., abstract) steps, as can
be seen in the execution trace shown in Figure 1(c) (e.g., navigat-
ing is an abstract step involving two primitive steps). Now, no-
tice that in this execution, breaking the connection after sending
the results for rock2, and then establishing the connection again
before sending the results for rock3 are (unwarranted) redundant
steps. Such redundancy is brought about by the overly abstract
task PerformSoilExperiment. What one would prefer to have is the
non-redundant hybrid-solution h′ of Figure 1(b). This plan avoids
the redundancy inherent in the initial solution h, yet still retains
much of the structure of the abstract plans provided by the pro-
grammer. In particular, it retains the abstract tasks Navigate and
ObtainSoilResults, which would allow their achievement in an al-
ternative manner to that shown here, if such existed and was war-
ranted by the situation at execution time. The replacement of tasks
PerformSoilExperiment and TransmitSoilResults with a subset of
their components is thus motivated in order to remove redundancy.

We note that, in addition to the redundant primitive actions ob-
served in this example, it is possible for a hybrid-plan to contain
unwarranted abstract operators, that is, abstract tasks whose corre-
sponding primitive actions are all redundant. In such cases, it may
be sensible to remove the abstract task altogether.

Interestingly, it turns out that there is an intrinsic tension be-
tween the use of maximally-abstract tasks and the removal of re-
dundancy. After describing, in Section 3, how to obtain a valid
hybrid-plan by using a classical planner and domain information
derived from the BDI program, we explore how to strike a princi-
pled and well-defined balance between abstraction and removal of
redundancy. In Section 4, hence, we provide an ideal definition of
a minimal, non-redundant, maximally-abstract hybrid-plan. Since
finding such solutions is computationally difficult, we develop, in
Section 5, a weaker notion and an algorithm to “improve” a given
hybrid-solution w.r.t. non-redundancy and maximal-abstraction.

2. PRELIMINARIES
The goal of our work is the synthesis of (new) abstract plans,

using existing BDI event-goals, such that the abstract plans can
be executed by the BDI execution engine in the same way as a
plan from the plan library. As has been previously noted (e.g., [4,
13, 12]), HTN planners use similar hierarchical structures to those
of BDI systems, though for different objectives. Basically, HTN
compound tasks map to BDI event-goals, while HTN methods map
to BDI plan-rules (plans). As the technical machinery that we need
is already well developed for HTN planners, we will review, and
then use this in our work, following the notation of [5].

The central concept in HTN planning is that of a task. There
are two kinds of tasks. A primitive task is an action act(�x) which
can be directly executed by the agent in the environment (e.g.,
drive(x1, x2)). A (high-level) compound task (also called a non-
primitive task) t(�x) is one that cannot be executed directly (e.g.,
travel(origin, dest)). A task network d = [s, φ] is a non-empty
collection s of labeled tasks of the form (n : t) (labels are unique
in d) that need to be accomplished, and a boolean formula of con-
straints φ. Constraints impose restrictions on the ordering of tasks
(n ≺ n′), on the binding of variables, and on what literals must
be true before or after a task (l, n), (n, l), or between two tasks
(n, l, n′). A method 〈t, d〉 encodes a legal way of decomposing a
compound task t into other tasks; in particular, a method specifies

in task network d the legal sub-tasks for accomplishing t, as well
as the constraints (if any) that must hold among those sub-tasks.
HTN methods thus provide the procedural knowledge of the do-
main. For example, method mtravel below encodes one way of
travelling from x to y, when those locations are close.

mtravel = 〈travel(x, y), dtaxi〉;
dtaxi = [{t1 : getTaxi, t2 : ride(x, y), t3 : payDriver}, φ];

φ = t1 ≺ t2 ∧ t1 ≺ t3 ∧ ((t1, F lat) ∨ t2 ≺ t3) ∧ (Close(x, y), t1).

Notice that, when traveling by taxi, one should always pay at the
end of the trip, unless the tariff found after booking the taxi is flat.

An HTN planning domain D = 〈Op, Me〉 consists of a library
Me of methods and a library Op of STRIPS operators. An
HTN planning problem Phtn is a triple 〈d, I,D〉, where d is the
task network to be accomplished, I is the initial state (i.e., the
set of all ground atoms that are true initially), and D is a plan-
ning domain. A primitive plan σ is a sequence act1 · . . . · actk

of ground primitive tasks (i.e., actions). A labeled primitive plan
τ = (n1 : act1) · . . . · (nk : actk) is like a primitive plan but with
labeled tasks. We shall sometimes use them interchangeably with
the obvious meaning.

Given a planning problem Phtn = 〈d, I,D〉, the planning pro-
cess involves repetitively selecting and applying an applicable re-
duction method from D to some compound task in d. This results in
a new, and typically more “primitive,” task network d′. This reduc-
tion process is repeated until only primitive tasks are left. Formally,
if d = [s, φ] is a task network, (n : t) ∈ s is a labeled non-primitive
task occurring in d, and m = 〈t′, d′〉 is a method that may be used
to decompose t (that is, t and t′ unify), then reduce(d, n, m) de-
notes the set of task networks that result from decomposing task
(n : t) in network d using method m. Informally, such decomposi-
tion involves updating both the set s, by replacing (n : t) with the
tasks in d′ (by arbitrarily renaming task labels), and the constraints
φ to account for the constraints in d′. We then define the set of all
possible reductions of d as follows:1

red(d,D) = {d′ | d′ ∈ reduce(d, n, m), (n : t) ∈ s, m ∈ Me}.

A primitive plan σ is a completion of primitive task network d
(i.e., one containing only primitive tasks) at state I, denoted σ ∈
comp(d, I,D), if σ is a total ordering of the primitive tasks in a
ground instance of d that satisfies the constraint formula in d.

Finally, by using sets red(d,D) and comp(d, I,D), one can eas-
ily define the set of plans sol(d, I,D) that solves an HTN planning
problem Phtn = 〈d, I,D〉 (see [5]). Note that all these definitions
generalize trivially to labeled plans τ .

We point out that the process of HTN decomposition can also
be seen as traces. So, we say that a decomposition trace for task
network d is a sequence of task networks λ = d1 = d · . . . ·dk such
that di+1 ∈ red(di,D), for all 1 ≤ i < k. A complete trace is one
whose last task network is primitive. A plan σ, hence, is a solution
for a task network d if it is a completion of the final task network
dk in a complete decomposition trace of d.

HTN planners, like BDI systems, focus on “goals-to-do,” that is,
how to achieve a given task in an initial state, by making use of
domain specific procedural information. Classical planners, on the
other hand, focus on “goals-to-be,” that is, how to bring about a
specific goal state from first-principles. A classical planning prob-
lem is thus defined as a tuple C = 〈I,G, Op〉, where I is the initial
state, G is the specification of the goal state to be achieved, and Op
is the model of actions, generally as STRIPS operators. A primitive
plan σ solves C, denoted σ ∈ sol(I,G, Op), iff σ is executable in I
1We have omitted the state in function red as it is not necessary.

Lavindra de Silva, Sebastian Sardina, Lin Padgham • First Principles Planning in BDI Systems

1107

(i.e., all actions’ preconditions are satisfied) and the state resulting
from the execution of σ satisfies G.

In this paper, we investigate what we refer to as hybrid-planning:
synthesizing abstract plans that can bring about a certain state of
affairs (as in classical planning) by making use of available domain
knowledge (as in HTN planning). This type of planning is par-
ticularly appealing in the context of BDI agent systems. Hybrid-
planning may enhance BDI agents by providing new plans that
were not encoded by the programmer. It will do so, though, by
re-using whatever procedural knowledge is available in the system.
By obtaining plans at a high-level of abstraction, we support the
flexibility and robustness of these systems: if an abstract step in a
plan happens to fail, another option may be tried to achieve the step.
Solving a hybrid planning problem, then, involves constructing an
abstract plan that can be decomposed using the domain knowledge
into a primitive plan that brings about the goal state.

A hybrid planning problem is a tuple H = 〈I,G,D〉, where I
is the initial state, G is the goal state, and D is an HTN planning
domain. A hybrid-plan h = [s, φ] is a task network where φ stands
for a conjunction of ordering constraints. Thus, hybrid-plans are
what is often referred to as partially-ordered plans [11]. Finally, a
hybrid-plan h is a hybrid-solution for a hybrid planning problem H
iff sol(h, I,D)∩sol(I,G, Op)
= ∅, that is, if there exists an HTN
solution for h—a primitive plan—that achieves the goal.

3. OBTAINING A HYBRID-SOLUTION
In order to obtain a hybrid-plan that achieves a given goal state,

given an initial state, we follow three basic steps: (i) we first trans-
form event-goals in the BDI system into abstract operators; (ii) we
then call the classical planner of choice with the current (initial)
state, the required goal state, and the abstract operators obtained in
the first step; and finally, (iii) we check the correctness of the plan
obtained to ensure that there is a viable decomposition.2 This final
step is indeed necessary due to the incompleteness of the represen-
tation used in the first transformation step.

3.1 Obtaining the Abstract Operators
Similarly to Kambhampati et al. [8], we view the plan library

as capturing valuable domain specific information which should be
used/respected when obtaining new plans, as the plan library pre-
serves what Kambhampati et al. refer to as user-intent. In order
to use event-goals as (abstract) operators for our planning domain,
we require both pre-conditions and post-conditions associated with
event-goals. Typically, pre-conditions are specified on particular
plans in a BDI system as a context condition. The pre-condition
of an event-goal can then be obtained straightforwardly as the dis-
junction of the context conditions of the associated plans in the plan
library. If post-conditions are already specified for event-goals or
plans (as they are in some systems [3]), then these can be used di-
rectly. In the case that they are not specified, we compute definite
effects of an event-goal, based on the structure of event-goals and
plans, combined with knowledge of the effects of basic actions.
This is done using an adaptation and extension of the summari-
sation algorithm of Clement et al. [2]. The effects obtained in
this manner are (potentially) a superset of the primary effects of an
event-goal supplied by the programmer in the work of [8], as our
computed definite effects will include any necessary side effects.

Intuitively, definite effects of an event-goal are those things which
are always true after successfully executing any decomposition of
2We use the CANPLAN language [12] as our formal framework,
and we use JACK (www.agent-software.com.au) and Metric-FF [7]
for our implementation. We impose certain language restrictions—
e.g., we disallow the specification of recursive event-goals.

plans to achieve that event-goal. We also calculate possible effects
of an event-goal which are those things that may result from some
decomposition of plans to achieve the event-goal. More precisely, a
definite effect of an event-goal corresponds to a literal that (i) is as-
serted in every successful sequence of steps starting from the event-
goal, and (ii) holds at the end of all such successful sequences. A
possible effect of an event-goal, on the other hand, corresponds to
a literal that (i) is mentioned within a decomposition of the event-
goal, and (ii) may or may not hold at the end of some successful
sequence of steps starting from the event-goal.3

Although our approach is similar to that of [2], there are also
some important extensions and differences. Most importantly, we
allow variables in literals, event-goals and actions, whereas the
summary algorithm of [2] does not allow variables in any of these
entities. Consequently, we need to account for the possibility that
values assigned at runtime to variables in literals may cause literals
to conflict. For example, take the following plan-body:

...
+Colour(block1, blue);
?(Block(?b) ∧ Colour(?b, blue));
−Colour(?b, blue);
+Colour(?b, red).

This plan adds a belief that block1 is blue, then binds the vari-
able ?b to some blue block (possibly block1), removes the be-
lief that ?b is blue and adds the belief that ?b is red. The literals
Colour(block1, blue) and Colour(?b, red) are both asserted in
the body of this plan. However, only Colour(?b, red) can be con-
sidered a definite effect, as Colour(block1, blue) will be true only
if ?b is not bound to block1. Therefore, Colour(block1, blue)
is only a possible effect. In our summarisation, we reason about
which literals will conflict as a consequence of values assigned to
their variables at runtime, and determine which literals will defi-
nitely be met, and which literals will possibly be met, on successful
execution of the program being summarised.

The second main difference in our approach to that of [2] is that
we avoid placing constraints on interactions between entities in a
plan. In [2], there is a requirement that all possible traces through
a goal-plan tree resulting from a plan are able to successfully exe-
cute. If this is not the case, then the plan is said to be inconsistent.
However, this requirement is too strong, since it is natural for an
event-goal to be used in a plan with the expectation that only cer-
tain plans of that event-goal will be applicable. This is particularly
true if event-goals, and their associated plans, are to be re-usable
components. In [2], if an event-goal (say e1) in a plan (say p1)
has some plan whose pre-condition could be clobbered by a plan
of some earlier event-goal in p1, then p1 is said to be inconsistent,
even though there may always be other suitable plans for handling
e1. Thus, for a plan to be consistent, every event-goal mentioned
in it must be handled only by plans whose preconditions are not
made false by effects brought about by plans of other event-goals
mentioned in the plan in question.

We avoid constraining our plans in this way, although this leads
to a weaker definition of possible effects than the corresponding
definition of may summary conditions in [2]. In our definition,
there can be literals which are mentioned in some plan (and are
therefore part of our possible effects), but in fact can never be
asserted, due to interactions which ensure that the particular plan
which asserts that literal can never be applied.

Another difference as compared to [2] is that our precondition is
3Definite and possible effects are referred to by Clement et al. as
respectively must and may summary conditions [2].

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1108

a standard classical precondition (with disjunction), whereas their
precondition is (essentially) two sets of literals: those that must
hold at the start of any successful execution of the event-goal, and
those that must hold at the start of one or more successful execu-
tions of the event-goal.

3.2 Planning and Validation
When we wish to obtain an abstract plan, we provide the de-

sired goal state, and the initial state, to our chosen classical plan-
ner, which contains a representation of each of our event-goals as
an abstract operator.

Because abstract operators do not model the possible effects of
event-goals, it may happen that when mapped back to event-goals
and executed, such effects create a situation in which later event-
goals (or abstract operators in the plan) are unable to execute suc-
cessfully. For example, a possible effect may clobber a pre-condition
of a later event-goal, as in the following. Consider the abstract plan
e1 · e2 for initial state p ∧ r and goal state s, where: (i) the pre-
condition of e1 is p, the definite effects are q, and the possible ef-
fects are ¬r; and the pre-condition of e2 is q ∧ r, and the definite
effects are s. Observe that it is possible for the state after the com-
pletion of e1 to be p ∧ ¬r, because the decomposition of e1 may
bring about the literal ¬r. If this happens, it will not be possible to
execute the plan for e2. For this reason, we say that abstract plan
e1 · e2 is potentially incorrect.

Because of this potential complication due to possible effects, it
is necessary to validate the abstract plan that is obtained, to ensure
that it is viable. In order to determine whether an abstract plan is
potentially incorrect, we do a simple check to ascertain whether
there is any literal in the precondition of some action ai such that
this literal is possibly clobbered in a1 . . . ai−1. If an abstract plan
is detected as being potentially incorrect, we use HTN planning, as
described in [12], to further investigate to determine whether the
plan is definitely incorrect (i.e., no plan decomposition exists). In
the case that the HTN planner is unable to find a successful decom-
position for the abstract plan, this plan is rejected, and a new plan
is requested from the classical planner, which is similarly tested
for validity. Maintaining information about possible effects allows
us to do a simple (and fast) check for potential incorrectness, thus
eliminating the need to check viable decomposition in cases which
are not potentially incorrect.

4. IDEAL HYBRID-SOLUTIONS
So far, we have shown how to obtain (correct) hybrid-plans for

a goal by planning with abstract operators, i.e., BDI event-goals.
However, as illustrated in the introduction, such plans, while being
correct, may contain redundancy. It is also the case that they may
contain a collection of abstract operators which could potentially
be combined into a single (more) abstract operator, thus improving
the abstraction level of the hybrid-plan. As discussed in the intro-
duction, we prefer more abstract hybrid-plans as they capture more
of what has been called user-intent, and importantly, they support
flexibility and robustness in execution. However, this preference
must be balanced against non-redundancy, both at the level of prim-
itive actions, and of unjustified abstract operators or event-goals.

In this section, we consider three inter-related concepts, and de-
fine these precisely in order to obtain an unambiguous descrip-
tion of an ideal hybrid-plan. These concepts we call maximal-
abstractness, minimality and non-redundancy. Intuitively, a hybrid-
plan is maximally-abstract if it cannot be obtained by a decomposi-
tion of some other hybrid-plan. Minimality is the requirement that
one cannot remove (usually abstract) tasks from a non-redundant
hybrid-solution to get another non-redundant hybrid-solution. A

t0

m0

→

t1

m1

a1

t2

m2

→

t3

OR

m3

a3

m4

→

a2 a3

t4

m5

a4

t5

m6

→

a5 a6

Action Prec. Post.
a1 p q ∧ u
a2 p q
a3 q r
a4 r s
a5 s r
a6 s t

Figure 2: A simple totally-ordered HTN domain. Tasks are

shown as rectangles and methods as rounded rectangles.

HYB-SOL NON-RED MIN MAX-ABS MNRMA
h0 = t2 · a6

√ √ √ √
h1 = t0 · t5 × × √ ×
h2 = t0 · a6

√ √ √ √
h3 = t1 · t2 · a6

√ × × ×
h4 = t0 · a5 · a6 × × × ×

Figure 3: Different hybrid-solutions and their properties.

primitive plan σ is said to be redundant if one or more actions in
σ can be removed to obtain a plan σ′ that is still a solution for the
planning problem in question [6, 9]. We say that a hybrid-solution
h is non-redundant if some primitive solution produced by it, for
the given initial state and goal state, is non-redundant.4 We note
that although non-redundancy is the more standard concept, min-
imality is a stronger notion, and, as we will illustrate shortly, it is
possible to have a non-redundant hybrid-solution that is not mini-
mal.

Before defining these notions formally, we illustrate them using
the HTN method library and the possible hybrid-solutions depicted
in Figures 2 and 3, respectively. Take the initial state to be {p}
and the goal state to be {t}. Hybrid-solution h3 is not maximally-
abstract because it is a refinement of hybrid-solution h2. Moreover,
h3 is not minimal either, as a proper subsequence of it, namely h0,
is a non-redundant hybrid-solution. This is despite the fact that
h3 is (weakly) non-redundant. Hybrid-solution t0 · t5 is redundant
because all of its primitive solutions, namely a1 ·a3 ·a4 ·a5 ·a6 and
a1 ·a2 ·a3 ·a4 ·a5 ·a6, are indeed redundant: one can remove action
a5 without invalidating the plan. Finally, h2 is maximally-abstract,
since it is not a refinement of any other hybrid-plan—hybrid-plan
t0 · t5 cannot be refined in any way to get exactly t0 · a6. It is not
hard to check that h2 is also non-redundant and minimal. That is,
hybrid-plan h2 conforms to all three basic notions. We call such
solutions minimal non-redundant maximally-abstract hybrid-plans
(MNRMA).

In what follows, we shall make these three notions precise. Be-
fore doing that, we note that it is generally convenient in HTN plan-
ning to make use of a distinguished dummy primitive task (which
we shall refer to as the ε task), that is, a primitive task whose pre-
condition is always true and postcondition is always empty—an ε
task basically amounts to “doing nothing.” Without loss of general-

4It would also be possible to define a stronger version of non-
redundancy on hybrid-solutions, where every primitive solution
produced by it is required to be non-redundant. However, we
choose to use the weaker notion.

Lavindra de Silva, Sebastian Sardina, Lin Padgham • First Principles Planning in BDI Systems

1109

ity, we assume from now on, that all ε tasks mentioned in primitive
plans in set sol(d, I,D) have been removed and that hybrid-plans
do not mention any ε tasks.

To define non-redundancy, we first extend the notion of perfect
justification for primitive solutions from [6]. A primitive solution
σ for planning problem 〈I,G, Op〉 is a perfect justification if there
does not exist a proper subsequence σ′ of σ such that σ′ is a prim-
itive solution for 〈I,G, Op〉. Basically, a hybrid-solution is non-
redundant if it can produce at least one perfect justification.

DEFINITION 1. (NON-REDUNDANT HYBRID-SOLUTIONS)
Let H = 〈I,G,D〉, with D = 〈Op, Me〉, be a hybrid planning
problem. Then, h is a non-redundant hybrid-solution for H if there
exists σ ∈ sol(h, I,D) ∩ sol(I,G, Op) such that σ is a perfect
justification for problem 〈I,G, Op〉. �

Let us next turn to the notion of minimality. Intuitively, we say
that a non-redundant hybrid-solution h is minimal, if there is no
substructure of h which gives the same result. More formally,
h = [s, φ] is a minimal non-redundant hybrid-solution for a hy-
brid planning problem H if there does not exist a non-redundant
hybrid-solution h′ = [s′, φ′] for H such that s′ ⊂ s, where φ′ is
obtained from φ by replacing with true every (ordering) constraint
that mentions some task label occurring in the set s \ s′. We do not
define minimality and non-redundancy as independent concepts, as
this can lead to a situation where there is no hybrid-solution that
is both minimal and non-redundant at the same time, which is then
problematic for our overall ideal definition. Instead we define min-
imality as a strengthening of non-redundancy.

Next, we focus on the third, and most involved, property of
hybrid-solutions, namely, maximal-abstractness. Roughly speak-
ing, a hybrid-solution is considered maximally-abstract if it cannot
be obtained by a “refinement” of any other hybrid-solution. The
refinements of a task network d is the set of all task networks that
may be obtained by reducing d zero or more times.

DEFINITION 2. (REFINEMENTS) Let d and D be a task net-
work and an HTN domain, respectively. The set of refinements of
d relative to D, denoted by refn(d,D), is defined as refn(d,D) =
refnω(d,D) =

S
n∈N0

refnn(d,D), where

refn0(d,D) = {d}; refnn+1(d,D) =
[

d′∈refnn
(d,D)

red(d′,D).

�

It is important to note that, since a refinement of a task network
is any intermediate task network encountered along a sequence of
HTN reductions, there is no guarantee that a refinement will in the
end produce a primitive plan solution. Furthermore, refinements in
general do not account for hybrid-plans, as the former can contain
variables and state constraints—a hybrid-plan is ground, and only
contains ordering constraints among its tasks.

So, we say that a hybrid-plan h′ is more abstract than a hybrid-
plan h, if one can reach h from h′ by refinements, and h′ produces
any of the solutions of interest that are produced by h.5 The no-
tion of “reaching h from h′” requires some technical care, as h
is a ground hybrid-plan, whereas refinements may have variables.
Therefore, we need to consider ground instances of refinements
(condition 2 below). Furthermore, one needs to respect those con-
straints obtained from the refinement of h′ (condition 3 below).

5It would also be possible to define a stronger notion in which h′

ought to produce all of the solutions of interest produced by h.

DEFINITION 3. (MAXIMALLY-ABSTRACT) Let D be an HTN
domain and I be a state. Let Δ be a set of hybrid-plans and h =
[sh, φh] ∈ Δ be a hybrid-plan in it.

Hybrid-plan h is maximally-abstract among set Δ for a set of
primitive plan solutions Σh ⊆ sol(h, I,D), if there is no hybrid-
plan h′ = [sh′ , φh′] ∈ Δ with |sh′ | < |sh| such that:

1. d1 ∈ refn(h′,D);

2. d2 = [sd2 , φd2] is a ground instance and task label renaming
of d1 such that sd2 ⊇ sh;

3. d3 = [sd2 , φd2 ∧ φh]; and

4. Σh ∩ sol(d3, I,D)
= ∅. �

That is, a hybrid-plan h is maximally-abstract among hybrid-plans
in set Δ for a set of primitive plan solutions Σh, if there is no
shorter hybrid-plan h′ in Δ that can produce h by a sequence of
reductions without losing all of the primitive plan solutions in Σh.

By putting together the notions of minimality, non-redundancy,
and that of maximal-abstraction for hybrid-plans,6 we can now de-
fine what “ideal” hybrid-solutions are.

DEFINITION 4. (MNRMA HYBRID-PLANS) A hybrid-plan h
is a minimal non-redundant maximal-abstraction (MNRMA) for a
hybrid planning problem H = 〈I,G,D〉 if and only if

1. h is a minimal non-redundant hybrid-solution for H; and

2. h is a maximally-abstract hybrid-plan among all possible
hybrid-plans for the set Σ ∩ sol(h, I,D), where Σ is the
set of all perfect justifications for 〈I,G, Op〉.

The set of all MNRMA plans for H is denoted MNRMA(H). �

That is, a hybrid-plan h is considered an MNRMA hybrid-plan
if it is minimal, and hence non-redundant, and moreover, a maximally-
abstract hybrid-plan within (i) the set of all possible hybrid-plans,
and (ii) the set of all perfect justifications it is able to produce.

The following theorem states that, whenever a hybrid planning
problem can be solved, there is, at least, one (optimal) MNRMA
hybrid-plan.

THEOREM 1. Let H = 〈I,G,D〉 be a hybrid planning prob-
lem. If sol(I,G,D)
= ∅, then there exists an MNRMA for H.

PROOF. (Sketch) Let h ∈ sol(I,G,D) be a hybrid-solution,
and let σ ∈ sol(h, I,D) ∩ sol(I,G, Op) be a primitive solution.
If σ is not a perfect justification for 〈I,G,D〉, then there must exist
a subsequence σ′ of σ that is a perfect justification for 〈I,G,D〉.
Observe that, since σ′ contains only primitives, it will also trivially
be minimal for 〈I,G,D〉. If σ′ is maximally-abstract (among all
possible hybrid-plans, for {σ′}), then σ′ is an MNRMA for H;
otherwise, there must exist another hybrid-plan h′ that is a MN-
RMA for H.

Unfortunately, it is not clear how one could compute an MN-
RMA hybrid-plan for a hybrid planning problem, without consid-
ering all possible hybrid-plans.7 Hence, in the next section, we
shall develop, and show how to implement, a weaker notion than
MNRMA that looks for the most “preferred” specialization of a
fixed hybrid-solution.
6At this stage, we are only interested in these three properties,
though, there may be other desirable properties one may look for.
7Technically, one would consider only shorter plans than the one at
hand.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1110

5. SPECIALIZING HYBRID-SOLUTIONS
Instead of searching for the global “best” hybrid-solution, we

focus here on “improving” a given hybrid-solution, by extracting
its non-redundant and most abstract part. As was shown in Section
3, the particular hybrid-solution that we start from may have been
produced by a first principles planner operating in the BDI domain.

Concretely, the task we are interested in is as follows: given a,
possibly redundant, hybrid-solution h for hybrid planning problem
H, together with one of its full successful decompositions, obtain a
most abstract specialization of h within the confines of the decom-
position at hand so that a perfect justification may be obtained.

Suppose, then, that we start with a particular hybrid-solution h
for hybrid planning problem H = 〈I,G,D〉. Suppose, further,
that λh = d0 · d1 · · · dn is a (complete) decomposition trace of h,
where d0 = h, and that σ ∈ comp(dn, I,D) ∩ sol(I,G, Op) is a
solution compatible with λh that achieves goal G. In what follows,
we aim to “specialize” hybrid-plan h within its decomposition λh,
so as to extract a preferred hybrid-plan h′, that is, a most abstract,
non-redundant specialization within the decomposition in question.

In order to develop an account of what a preferred specialization
for a hybrid-plan is, we will define two basic notions. The first is
what we call a decomposition tree, and the second is a cut in this
tree. Intuitively, a decomposition tree is a tree induced by reduc-
tions on a task network, as shown in Figure 4, and a cut is a set of
nodes in this tree. We are interested in finding a most abstract cut
whose decomposition yields a non-redundant primitive solution.

In general, our preferred hybrid-plan, given an initial hybrid-plan
and a decomposition tree, will not be an (ideal) MNRMA hybrid-
plan as defined in the previous section. However, if an MNRMA
hybrid-plan is mentioned in the decomposition tree given, then the
plan will also be a preferred hybrid-plan.

It is straightforward to see that a sequence of reductions on a task
network implicitly induces a decomposition tree of task nodes, as in
Figure 4. A decomposition tree shows the structure of a particular
refinement, by depicting how each compound task node is decom-
posed into lower-level tasks (the children) by applying a particular
method. Observe that the constraints used for a node reduction are
kept in the node itself. Technically, a decomposition tree T of task
network d = [sd, φd] relative to domain D is composed of AND-
branches, where

1. each node u in T is of the form 〈n, t, φ〉, where n is a unique
label in the tree, t is a ground domain task or ε, and φ is a
ground constraint formula;

2. the root of T is node u = 〈0, ε, φdθ〉 and children(u, T) =
{〈n, t, φ〉 | (n : t) ∈ sdθ};

3. if u = 〈n, t, φθ′〉 is an internal non-root node in T such that
children(u, T) = {u1θ, . . . , unθ}, with ui = 〈ni, ti, φi〉,
then there exists a reduction [s, φ] ∈ red([{(n : t)}, true],D)
of t where s =

S
i≤n{(ni : ti)}; and

4. if u = 〈n, t, φ〉 is a leaf node, then φ = true.

Observe that nodes represent compound or primitive tasks, or
are ε-nodes representing the root or dummy primitive tasks. It
is not difficult to see that different decomposition traces may in-
duce the same decomposition tree, up to task label renaming—
decomposition trees are agnostic on when tasks are reduced. Lastly,
note that trees are always ground, and that they can always be con-
structed with arbitrary labels for the tasks (except for the root’s
children, specified in d).

We say that a decomposition tree is complete if there is no leaf
node representing a compound task. Notice that in a complete de-

composition tree, a leaf node can correspond to a “normal” prim-
itive task (i.e., action), or to a dummy primitive task of the form
〈n, ε, true〉. We extract the set of actions in a decomposition tree
as follows:

actions(T) = {(n : t) | 〈n, t, φ〉 ∈ leaves(T), t
= ε}.

A decomposition tree per se does not specify any ordering among
tasks, and in particular, any ordering among primitive task leaf
nodes. To this end, we define a full decomposition tree. But first,
we define a completion of a complete decomposition tree T as a
linearisation of the set leaves(T), that is, a linear labeled primitive
plan τ built from exactly the leaves in T . For example, a comple-
tion of the tree in Figure 4 is (2 : a1) · (3 : a2) · (6 : a3) · (7 :
a4) · (9 : a5) · (12 : a7) · (10 : a6) · (13 : a8) · (15 : a9) · (17 : ε).
A full decomposition tree, then, is obtained by putting together a
complete decomposition tree T and one of its completions τ , and
is denoted Tτ . A full decomposition tree encodes not only how
tasks are fully reduced to primitive tasks, but also how these are
ordered to form a final linear plan.

Full decomposition trees, however, are still merely syntactic ob-
jects, and therefore independent of any (initial) state—they just de-
scribe legal syntactic ways of transforming tasks into other tasks
with respect to the method library. Given a full decomposition tree
Tτ and an initial state I, we say that Tτ is executable in I if (i) the
decomposition tree is legal in I, that is, all the constraints along the
decomposition tree are satisfied relative to τ ; and (ii) the labeled
primitive plan τ is executable in I (relative to the action domain
Op). We write 〈Tτ , I〉 |= φ (or just Tτ |= φ if there are no state
constraints in φ and therefore I is irrelevant) to denote that the for-
mula φ of constraints holds under the full decomposition tree Tτ .8

A cut in a (full) decomposition tree, is then a set of nodes which
(together with the necessary constraints) can form a hybrid-plan.
Formally, a cut in a decomposition tree T is a set of task nodes
π in T such that for all u, u′ ∈ π, with u
= u′, it is the case
that (descendants(u, T) ∪ {u}) ∩ (descendants(u′, T) ∪ {u′}) =
∅. For example, {〈1, t1, 2 ≺ 3〉, 〈4, t2, 5 ≺ 8 ∧ 5 ≺ 11〉} in
Figure 4 is a legal cut, but {〈4, t2, 5 ≺ 8 ∧ 5 ≺ 11〉, 〈5, t3, 6 ≺
7〉} is not. In turn, a cut π in a decomposition tree T induces a
new decomposition tree, denoted T |π , by projecting only on those
nodes in π, and trivially adding a node 〈root, ε, true〉 as root with
π as its children. The projection operation trivially generalizes to
full decomposition trees, denoted Tτ |π , by projecting in τ only the
primitive tasks that are leaf nodes in T |π , that is, Tτ |π = T ′

τ ′ where
T ′ = T |π and τ ′ = τ |leaves(T ′).

We are now in a position to start defining our preferred hybrid-
plan, relative to a given hybrid-plan and a full decomposition tree.
Our preferred hybrid-plans are non-redundant while preserving their
abstraction as much as possible. Guided by the notion of maximal-
abstraction, some cuts are more abstract than others. Given two
cuts π′ and π in a decomposition tree T , we say that π′ dominates
π if π ⊆

S
u∈π′ descendants(u, T) ∪ π′, and actions(T |π′) =

actions(T |π). That is, π′ produces, at least, π without introducing
new primitive actions in the end—whatever is produced besides π
does not lead to any actions. For instance, cut π1 = {〈4, t2, 5 ≺
8 ∧ 5 ≺ 11〉} dominates cut π2 = {〈5, t3, 6 ≺ 7〉, 〈8, t4, 9 ≺
12〉, 〈11, t5, 10 ≺ 13〉} in Figure 4.

Finally, we can use cuts to define what the preferred special-
izations of hybrid-plans are. Let decsol(h,H) be the set of full
decomposition trees Tτ of hybrid-plan h, that are executable in I,
8Notice each constraint in a full decomposition tree is either true or
false given the initial situation, while for decomposition trees alone
this is not necessarily the case, as the satisfaction of the constraints
generally depends on the final ordering of the leaf primitive tasks.

Lavindra de Silva, Sebastian Sardina, Lin Padgham • First Principles Planning in BDI Systems

1111

and such that τ ∈ sol(I,G, Op) (i.e., the completion achieves the
goal). Also, when π is a cut in a full decomposition tree Tτ , we
define the set of labeled tasks in π, and the ordering constraints on
π that are implied by the full decomposition tree as follows:

π̂ = {(n : t) | 〈n, t, ψ〉 ∈ π, for some constraint formula ψ};
Φ[Tτ , π] =V

{n1 ≺ n2 | 〈n1, t1, φ1〉, 〈n2, t2, φ2〉 ∈ π, Tτ |= n1 ≺ n2}.

A preferred specialization of a hybrid-plan h is a most abstract
non-redundant hybrid-plan that can be extracted from a given de-
composition tree of h.

DEFINITION 5. (PREFERRED SPECIALIZATION) Let h be a
hybrid-solution for a hybrid planning problem H, and let Tτ ∈
decsol(h,H). Then, h′ is a preferred specialization of h within Tτ

for H if h′ = [π̂, Φ[Tτ , π]] for some cut π in T such that:

1. τ |actions(T |π) is a perfect justification for 〈I,G, Op〉;

2. the projected full decomposition tree Tτ |π is executable in I;

3. there is no cut π′, with |π′| < |π|, that dominates π and such
that Tτ |π′ is executable in I. �

In words, cut π is a selection of, possibly compound, non-ε tasks
legally yielding a non-redundant primitive solution for the desired
goal within the decomposition at hand, and in addition, is as ab-
stract as possible within the decomposition. A preferred special-
ization is then built by taking such a cut and adding the ordering
constraints implied on the cut by the decomposition.

It is clear that, by definition, the preferred specialization h is
non-redundant for the goal, and that there is no other more abstract
hybrid-plan h′ within the same decomposition that achieves the
goal without redundancy. Notice, however, that preferred special-
izations may not be minimal within the decomposition. A minimal
preferred specialization, thus, is one for which no subset is also a
preferred specialization.

The following result guarantees that there is always a preferred
specialization of a hybrid-solution.

THEOREM 2. Let H be a hybrid planning problem, and let h
be a hybrid-plan. If Tτ ∈ decsol(h,H), then there exists at least
one preferred specialization of h within Tτ for H.

PROOF. (Sketch) Since Tτ ∈ decsol(h,H), there must exist a
subsequence τ ′ of τ that is a perfect justification for C = 〈I,G, Op〉.
Take the cut π as the set of labeled tasks occuring in τ ′. Clearly,
τ |actions(T |π) = τ ′ is a perfect justification for C. Also, since
Tτ |π is actually τ ′ and τ ′ solves C, tree Tτ |π ought to be executable
in I. So, if there is no cut in T that dominates π while inducing
an executable projected tree, then primitive plan [π̂, Φ[Tτ , π]] is in-
deed a preferred specialization. Otherwise, if such a cut π′ does
exist, then it can be proved that the first two conditions above hold
for π′, which means that either [π̂′, Φ[Tτ , π′]] is a preferred special-
ization, or there is another cut π′′ that dominates π while inducing
an executable projected tree. This reasoning can be followed all the
way to the top of tree T , where no dominating cut may exist and
plan h itself would be the preferred specialization.

Of course, since the dominance relation among cuts is not total, and
since there may exist more than one perfect justification that can be
extracted from a completion, there may actually be more than one
preferred specialization.

Recall that our ideal MNRMA hybrid-plan (Definition 4) essen-
tially defined a most abstract non-redundant hybrid-solution among

〈root, ε, 1 ≺ 4 ∧ 4 ≺ 14〉

〈1, t1, 2 ≺ 3〉

〈2, a1〉 〈3, a2〉

〈4, t2, 5 ≺ 8 ∧ 5 ≺ 11〉

〈5, t3, 6 ≺ 7〉

〈6, a3〉 〈7, a4〉
〈8, t4, 9 ≺ 12〉

〈9, a5〉 〈12, a7〉

〈11, t5, 10 ≺ 13〉

〈10, a6〉 〈13, a8〉

〈14, t6, 15 ≺ 16〉

〈15, a9〉 〈16, t0〉

〈17, ε〉

Figure 4: A complete decomposition tree T of task network

d = [{(1 : t1), (4 : t2), (14 : t6)}, (1 ≺ 4) ∧ (4 ≺ 14)]. Dotted

rectangles stand for primitive actions or ε tasks (node 〈17, ε〉);
missing constraints stand for true.

all conceivable hybrid-plans. Our preferred specialization, how-
ever, is limited to what can be extracted from a given decompo-
sition of an existing hybrid-plan. Nonetheless, the following the-
orem states that if a hybrid-plan’s full decomposition being con-
sidered does contain an MNRMA hybrid-plan that leads to a non-
redundant primitive solution within the confines of the decomposi-
tion, then the MNRMA hybrid-plan is guaranteed to be a preferred
specialization. In the definition below, set decsolnr(h,H) stands
for the set of full decomposition trees Tτ in decsol(h,H) such that
τ |actions(T) is a perfect justification for H. (Note that whenever a
tree is in this set, so is any variation of it obtained by a consistent
task label renaming.)

THEOREM 3. Let h be a hybrid-solution for hybrid planning
problem H, and let Tτ ∈ decsol(h,H). Suppose that there ex-
ists a cut π in Tτ such that hπ = [π̂, Φ[Tτ , π]] ∈ MNRMA(H)
(that is, π represents an MNRMA solution for H) and such that
there is a decomposition in decsolnr(hπ,H) that is equivalent to
Tτ |π , modulo their root nodes. Then, hybrid-plan hπ is a preferred
specialization of h within Tτ for H.

PROOF. (Sketch) Since hπ ∈ MNRMA(H), there cannot be a
cut π′ in Tτ , with |π′| < |π|, such that π′ dominates π while induc-
ing an executable decomposition tree; otherwise, π′ (or some other
cut π′′ in Tτ , with |π′′| < |π′|, that induces an executable decom-
position tree) will represent an MNRMA solution for H, and π will
not. Also, since there is a decomposition tree in decsolnr(hπ,H)
that is equivalent to Tτ |π (modulo their root nodes), it is easy to
see that (i) Tτ |π is executable in I; and (ii) τ |actions(T |π) is a per-
fect justification for H. From this it follows that hπ is a preferred
specialization of h within Tτ for H.

Let us now explain how preferred specializations can be extracted
from a given decomposition of a hybrid-solution.

5.1 Computing Preferred Specializations
Algorithm 1 computes a preferred specialization of a hybrid-

solution h for a hybrid planning problem H. In a nutshell, the
algorithm works bottom-up, starting at the leaf-level with a labeled
primitive perfect justification plan τ ′ (line 1), and repetitively ab-
stracting out one or more steps into a higher-level more abstract
step (lines 3-9). Once no more abstractions are possible, the corre-
sponding constraints entailed by the decomposition tree for the final
steps are calculated (step 11) and the final hybrid-plan returned.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1112

Algorithm 1 Find-Preferred-Specialization(h,H, Tτ)

Require: Hybrid-sol. h, hybrid problem H, Tτ ∈ decsol(h,H).
Ensure: A preferred specialization of h within Tτ for H.

1: τ ′ ⇐ Get-Perfect-Justification(τ,H) // As in [6]; ignore ε tasks
2: π = {〈n, t, φ〉 | (n : t) ∈ τ ′, 〈n, t, φ〉 ∈ Tτ}
3: for � ⇐ 1 to height(Tτ) − 1 do // Leafs at level 0
4: for each node u at level � in tree T do

5: if children(u, T) ⊆ π and 〈Tτ |π, I〉 |= uφ then

6: π ⇐ (π \ children(u, T)) ∪ {u}
7: end if

8: end for

9: end for

10: π ⇐ π \ Δ ⇐ {u | u ∈ π, all leafs of T |{u} are ε nodes}
11: φ ⇐ Φ[Tτ , π] // As defined just before Definition 5
12: Return [π̂, φ]

At any point in time, the algorithm maintains a “current” cut π,
which, initially, is a perfect justification without ε tasks removed.
In line 4, a node u in the tree is selected for abstraction. If all the
children of u are part of the current cut and the constraints required
to decompose u into its children are indeed satisfied (line 5), then
all the children of u are abstracted out into node u itself (line 6).
It is not hard to see that this abstraction process can be carried on
bottom-up, by performing the abstraction of all nodes at level k
before abstracting to nodes at level k + 1.

Finally, the rationale behind line 10 is that we do not want the
final hybrid-plan to include compound tasks not contributing at all
to the perfect justification. An example of such a compound task is
node 〈16, t0〉 in Figure 4, which produces the ε node 〈17, ε〉.

To illustrate how the algorithm works, suppose τ ′ = (2 : a1) ·
(9 : a5) · (10 : a6) · (12 : a7) · (13 : a8) · (15 : a9) · (17 : ε)—
that is, actions (3 : a2), (6 : a3), and (7 : a4) are redundant
for achieving the goal. In such a case, the computed (preferred)
hybrid-plan specialization would be h = [s, φ], where:

s = {(2 : a1), (8 : t4), (11 : t5), (14 : t6)};
φ = 2 ≺ 8 ∧ 2 ≺ 11 ∧ 8 ≺ 14 ∧ 11 ≺ 14 ∧ 2 ≺ 14.

Note that this is a partial-order plan, as the execution of compound
tasks 8 and 11 may be interleaved (and, in fact, they are in Tτ).

It is not hard to see that Algorithm 1, once a perfect primitive
plan justification is obtained (see [6]), runs in polynomial time on
the size of the decomposition tree T . More importantly, the algo-
rithm can be proved correct with respect to Definition 5. In fact, it
computes not just any preferred specializations, but minimal ones.

THEOREM 4. Under the assumptions on the input, Algorithm 1
always terminates and returns a minimal preferred specialization
of hybrid-solution h within Tτ for H.

PROOF. (Sketch) Termination (of loops in lines 3 and 4) follows
trivially by the fact that the tree (and its height) is finite. Minimality
is due to line 10 in the algorithm, in which tasks that do not con-
tribute to any action in the perfect justification are removed.

6. DISCUSSION
In this paper, we have presented an approach to obtaining new

abstract plans in a BDI system, that is, plans that were not given as
initial procedural knowledge. This ability substantially increases
the autonomy of a BDI agent. If, for instance, there is no plan appli-
cable to achieve a high priority goal, then our agents may consider
synthesizing a new plan to achieve the goal, or the context condi-
tions of some relevant plans, thus, producing an applicable option.

Unlike previous work on classical planning in BDI agents, we focus
on producing abstract plans for hybrid planning problems, which
considers both goal states to be achieved and the high-level plans
already programmed. This has the advantage that, like the usual
hierarchical plans of a BDI agent, these new abstract plans will be
more robust for execution in a dynamic environment. It also has the
advantage of ensuring that, to the extent possible, things are done in
the way that has been programmed for the application — a notion
which Kambhampati et al. [8] refers to as “user-intent.”

The work of Kambhampati et al. [8] is the closest to ours and is
indeed motivated by the desire to combine HTN and classical plan-
ning. Our work is different in that we extract the abstract operators
from a BDI system, and then also execute the resulting hybrid-plan
within this framework. There are also differences in the details of
the approach; for example, they require the programmer to pro-
vide effects, whereas we compute these automatically. Most im-
portantly, however, they do not address the issue of the balance
between abstraction and redundancy, which we explore in depth.

In bringing classical planning into BDI hierarchical structures,
we explored the tension between abstraction and a desire for non-
redundancy. We first defined an “ideal” account of abstract plans
which we called minimal non-redundant maximally-abstract
(MNRMA). As searching for such plans would require, in prin-
ciple, comparison among all possible plans, we developed a less
ambitious approach, and an algorithm for it, in which a given can-
didate solution—maybe obtained using a classical planner—can be
“improved” giving then what we call a preferred hybrid-plan.

7. REFERENCES

[1] S. S. Benfield, J. Hendrickson, and D. Galanti. Making a strong
business case for multiagent technology. In Proc. of AAMAS‘06,
pages 10–15, 2006.

[2] B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract reasoning for
planning and coordination. Journal of Artificial Intelligence
Research, 28:453–515, 2007.

[3] O. Despouys and F. F. Ingrand. Propice-Plan: Toward a unified
framework for planning and execution. In Proc. of European
Conference on Planning, pages 278–293, 1999.

[4] J. Dix, H. Muñoz-Avila, D. S. Nau, and L. Zhang. IMPACTing
SHOP: Putting an AI planner into a multi-agent environment. Annals
of Mathematics and Artificial Intelligence, 37(4):381–407, 2003.

[5] K. Erol, J. A. Hendler, and D. S. Nau. Complexity results for HTN
planning. Annals of Mathematics and Artificial Intelligence,
18(1):69–93, 1996.

[6] E. Fink and Q. Yang. Formalizing plan justifications. In Proc. of the
Ninth Conference of the Canadian Society for Computational Studies
of Intelligence, pages 9–14, 1992.

[7] J. Hoffmann. The Metric-FF planning system: Translating “ignoring
delete lists” to numeric state variables. Journal of Artificial
Intelligence Research, 20:291–341, 2003.

[8] S. Kambhampati, A. D. Mali, and B. Srivastava. Hybrid planning for
partially hierarchical domains. In Proc. of AAAI, pages 882-888,1998.

[9] C. A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68(2):243–302, 1994.

[10] F. R. Meneguzzi, A. F. Zorzo, and M. D. C. Móra. Propositional
planning in BDI agents. In Proc. of the ACM Symposium on Applied
Computing, pages 58–63, 2004.

[11] S. Minton, J. Bresina, and M. Drummond. Total-order and
partial-order planning: A comparative analysis. Journal of Artificial
Intelligence Research, 2:227–262, 1994.

[12] S. Sardina, L. de Silva, and L. Padgham. Hierarchical planning in
BDI agent programming languages: a formal approach. In Proc. of
AAMAS‘06, pages 1001–1008, 2006.

[13] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley.
Planning and reacting in uncertain and dynamic environments.
Journal of Experimental and Theoretical AI, 7(1):197–227, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

